0.9.7
dual_quaternion.hpp
Go to the documentation of this file.
1 
45 #pragma once
46 
47 // Dependency:
48 #include "../glm.hpp"
49 #include "../gtc/constants.hpp"
50 #include "../gtc/quaternion.hpp"
51 
52 #if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
53 # pragma message("GLM: GLM_GTX_dual_quaternion extension included")
54 #endif
55 
56 namespace glm
57 {
60 
61  template <typename T, precision P = defaultp>
62  struct tdualquat
63  {
64  // -- Implementation detail --
65 
66  typedef T value_type;
67  typedef glm::tquat<T, P> part_type;
68 
69 # ifdef GLM_META_PROG_HELPERS
70  static GLM_RELAXED_CONSTEXPR length_t components = 2;
71  static GLM_RELAXED_CONSTEXPR precision prec = P;
72 # endif//GLM_META_PROG_HELPERS
73 
74  // -- Data --
75 
76  glm::tquat<T, P> real, dual;
77 
78  // -- Component accesses --
79 
80 # ifdef GLM_FORCE_SIZE_FUNC
81  typedef size_t size_type;
83  GLM_FUNC_DECL GLM_CONSTEXPR size_type size() const;
84 
85  GLM_FUNC_DECL part_type & operator[](size_type i);
86  GLM_FUNC_DECL part_type const & operator[](size_type i) const;
87 # else
88  typedef length_t length_type;
90  GLM_FUNC_DECL GLM_CONSTEXPR length_type length() const;
91 
92  GLM_FUNC_DECL part_type & operator[](length_type i);
93  GLM_FUNC_DECL part_type const & operator[](length_type i) const;
94 # endif//GLM_FORCE_SIZE_FUNC
95 
96  // -- Implicit basic constructors --
97 
98  GLM_FUNC_DECL tdualquat() GLM_DEFAULT_CTOR;
99  GLM_FUNC_DECL tdualquat(tdualquat<T, P> const & d) GLM_DEFAULT;
100  template <precision Q>
101  GLM_FUNC_DECL tdualquat(tdualquat<T, Q> const & d);
102 
103  // -- Explicit basic constructors --
104 
105  GLM_FUNC_DECL explicit tdualquat(ctor);
106  GLM_FUNC_DECL explicit tdualquat(tquat<T, P> const & real);
107  GLM_FUNC_DECL tdualquat(tquat<T, P> const & orientation, tvec3<T, P> const & translation);
108  GLM_FUNC_DECL tdualquat(tquat<T, P> const & real, tquat<T, P> const & dual);
109 
110  // -- Conversion constructors --
111 
112  template <typename U, precision Q>
113  GLM_FUNC_DECL GLM_EXPLICIT tdualquat(tdualquat<U, Q> const & q);
114 
115  GLM_FUNC_DECL explicit tdualquat(tmat2x4<T, P> const & holder_mat);
116  GLM_FUNC_DECL explicit tdualquat(tmat3x4<T, P> const & aug_mat);
117 
118  // -- Unary arithmetic operators --
119 
120  GLM_FUNC_DECL tdualquat<T, P> & operator=(tdualquat<T, P> const & m) GLM_DEFAULT;
121 
122  template <typename U>
123  GLM_FUNC_DECL tdualquat<T, P> & operator=(tdualquat<U, P> const & m);
124  template <typename U>
125  GLM_FUNC_DECL tdualquat<T, P> & operator*=(U s);
126  template <typename U>
127  GLM_FUNC_DECL tdualquat<T, P> & operator/=(U s);
128  };
129 
130  // -- Unary bit operators --
131 
132  template <typename T, precision P>
133  GLM_FUNC_DECL tquat<T, P> operator-(tquat<T, P> const & q);
134 
135  // -- Binary operators --
136 
137  template <typename T, precision P>
138  GLM_FUNC_DECL tdualquat<T, P> operator+(tdualquat<T, P> const & q, tdualquat<T, P> const & p);
139 
140  template <typename T, precision P>
141  GLM_FUNC_DECL tdualquat<T, P> operator*(tdualquat<T, P> const & q, tdualquat<T, P> const & p);
142 
143  template <typename T, precision P>
144  GLM_FUNC_DECL tvec3<T, P> operator*(tquat<T, P> const & q, tvec3<T, P> const & v);
145 
146  template <typename T, precision P>
147  GLM_FUNC_DECL tvec3<T, P> operator*(tvec3<T, P> const & v, tquat<T, P> const & q);
148 
149  template <typename T, precision P>
150  GLM_FUNC_DECL tvec4<T, P> operator*(tquat<T, P> const & q, tvec4<T, P> const & v);
151 
152  template <typename T, precision P>
153  GLM_FUNC_DECL tvec4<T, P> operator*(tvec4<T, P> const & v, tquat<T, P> const & q);
154 
155  template <typename T, precision P>
156  GLM_FUNC_DECL tdualquat<T, P> operator*(tdualquat<T, P> const & q, T const & s);
157 
158  template <typename T, precision P>
159  GLM_FUNC_DECL tdualquat<T, P> operator*(T const & s, tdualquat<T, P> const & q);
160 
161  template <typename T, precision P>
162  GLM_FUNC_DECL tdualquat<T, P> operator/(tdualquat<T, P> const & q, T const & s);
163 
167  template <typename T, precision P>
168  GLM_FUNC_DECL tdualquat<T, P> normalize(tdualquat<T, P> const & q);
169 
173  template <typename T, precision P>
174  GLM_FUNC_DECL tdualquat<T, P> lerp(tdualquat<T, P> const & x, tdualquat<T, P> const & y, T const & a);
175 
179  template <typename T, precision P>
180  GLM_FUNC_DECL tdualquat<T, P> inverse(tdualquat<T, P> const & q);
181 
185  template <typename T, precision P>
186  GLM_FUNC_DECL tmat2x4<T, P> mat2x4_cast(tdualquat<T, P> const & x);
187 
191  template <typename T, precision P>
192  GLM_FUNC_DECL tmat3x4<T, P> mat3x4_cast(tdualquat<T, P> const & x);
193 
197  template <typename T, precision P>
198  GLM_FUNC_DECL tdualquat<T, P> dualquat_cast(tmat2x4<T, P> const & x);
199 
203  template <typename T, precision P>
204  GLM_FUNC_DECL tdualquat<T, P> dualquat_cast(tmat3x4<T, P> const & x);
205 
206 
210  typedef tdualquat<float, lowp> lowp_dualquat;
211 
215  typedef tdualquat<float, mediump> mediump_dualquat;
216 
220  typedef tdualquat<float, highp> highp_dualquat;
221 
222 
226  typedef tdualquat<float, lowp> lowp_fdualquat;
227 
231  typedef tdualquat<float, mediump> mediump_fdualquat;
232 
236  typedef tdualquat<float, highp> highp_fdualquat;
237 
238 
242  typedef tdualquat<double, lowp> lowp_ddualquat;
243 
247  typedef tdualquat<double, mediump> mediump_ddualquat;
248 
252  typedef tdualquat<double, highp> highp_ddualquat;
253 
254 
255 #if(!defined(GLM_PRECISION_HIGHP_FLOAT) && !defined(GLM_PRECISION_MEDIUMP_FLOAT) && !defined(GLM_PRECISION_LOWP_FLOAT))
256  typedef highp_fdualquat dualquat;
260 
264  typedef highp_fdualquat fdualquat;
265 #elif(defined(GLM_PRECISION_HIGHP_FLOAT) && !defined(GLM_PRECISION_MEDIUMP_FLOAT) && !defined(GLM_PRECISION_LOWP_FLOAT))
266  typedef highp_fdualquat dualquat;
267  typedef highp_fdualquat fdualquat;
268 #elif(!defined(GLM_PRECISION_HIGHP_FLOAT) && defined(GLM_PRECISION_MEDIUMP_FLOAT) && !defined(GLM_PRECISION_LOWP_FLOAT))
269  typedef mediump_fdualquat dualquat;
270  typedef mediump_fdualquat fdualquat;
271 #elif(!defined(GLM_PRECISION_HIGHP_FLOAT) && !defined(GLM_PRECISION_MEDIUMP_FLOAT) && defined(GLM_PRECISION_LOWP_FLOAT))
272  typedef lowp_fdualquat dualquat;
273  typedef lowp_fdualquat fdualquat;
274 #else
275 # error "GLM error: multiple default precision requested for single-precision floating-point types"
276 #endif
277 
278 
279 #if(!defined(GLM_PRECISION_HIGHP_DOUBLE) && !defined(GLM_PRECISION_MEDIUMP_DOUBLE) && !defined(GLM_PRECISION_LOWP_DOUBLE))
280  typedef highp_ddualquat ddualquat;
284 #elif(defined(GLM_PRECISION_HIGHP_DOUBLE) && !defined(GLM_PRECISION_MEDIUMP_DOUBLE) && !defined(GLM_PRECISION_LOWP_DOUBLE))
285  typedef highp_ddualquat ddualquat;
286 #elif(!defined(GLM_PRECISION_HIGHP_DOUBLE) && defined(GLM_PRECISION_MEDIUMP_DOUBLE) && !defined(GLM_PRECISION_LOWP_DOUBLE))
287  typedef mediump_ddualquat ddualquat;
288 #elif(!defined(GLM_PRECISION_HIGHP_DOUBLE) && !defined(GLM_PRECISION_MEDIUMP_DOUBLE) && defined(GLM_PRECISION_LOWP_DOUBLE))
289  typedef lowp_ddualquat ddualquat;
290 #else
291 # error "GLM error: Multiple default precision requested for double-precision floating-point types"
292 #endif
293 
295 } //namespace glm
296 
297 #include "dual_quaternion.inl"
GLM_FUNC_DECL tdualquat< T, P > dualquat_cast(tmat3x4< T, P > const &x)
Converts a 3 * 4 matrix (augmented matrix rotation + translation) to a quaternion.
tdualquat< double, lowp > lowp_ddualquat
Dual-quaternion of low double-precision floating-point numbers.
GLM_FUNC_DECL tdualquat< T, P > normalize(tdualquat< T, P > const &q)
Returns the normalized quaternion.
tdualquat< float, highp > highp_dualquat
Dual-quaternion of high single-precision floating-point numbers.
GLM_FUNC_DECL tmat4x4< T, P > orientation(tvec3< T, P > const &Normal, tvec3< T, P > const &Up)
Build a rotation matrix from a normal and a up vector.
tdualquat< float, mediump > mediump_fdualquat
Dual-quaternion of medium single-precision floating-point numbers.
highp_fdualquat fdualquat
Dual-quaternion of single-precision floating-point numbers.
GLM_FUNC_DECL T length(vecType< T, P > const &x)
Returns the length of x, i.e., sqrt(x * x).
tdualquat< float, lowp > lowp_dualquat
Dual-quaternion of low single-precision floating-point numbers.
GLM_FUNC_DECL tdualquat< T, P > lerp(tdualquat< T, P > const &x, tdualquat< T, P > const &y, T const &a)
Returns the linear interpolation of two dual quaternion.
GLM_FUNC_DECL tmat2x4< T, P > mat2x4_cast(tdualquat< T, P > const &x)
Converts a quaternion to a 2 * 4 matrix.
highp_ddualquat ddualquat
Dual-quaternion of default double-precision floating-point numbers.
tdualquat< double, highp > highp_ddualquat
Dual-quaternion of high double-precision floating-point numbers.
tdualquat< float, highp > highp_fdualquat
Dual-quaternion of high single-precision floating-point numbers.
Definition: _noise.hpp:40
GLM_FUNC_DECL tdualquat< T, P > inverse(tdualquat< T, P > const &q)
Returns the q inverse.
tdualquat< float, mediump > mediump_dualquat
Dual-quaternion of medium single-precision floating-point numbers.
tdualquat< double, mediump > mediump_ddualquat
Dual-quaternion of medium double-precision floating-point numbers.
GLM_FUNC_DECL tmat3x4< T, P > mat3x4_cast(tdualquat< T, P > const &x)
Converts a quaternion to a 3 * 4 matrix.
tdualquat< float, lowp > lowp_fdualquat
Dual-quaternion of low single-precision floating-point numbers.
highp_fdualquat dualquat
Dual-quaternion of floating-point numbers.