0.9.9 API documentation

Include <glm/gtx/matrix_factorisation.hpp> to use the features of this extension. More...
Functions  
template<length_t C, length_t R, typename T , qualifier Q>  
GLM_FUNC_DECL mat< C, R, T, Q >  fliplr (mat< C, R, T, Q > const &in) 
Flips the matrix columns right and left. More...  
template<length_t C, length_t R, typename T , qualifier Q>  
GLM_FUNC_DECL mat< C, R, T, Q >  flipud (mat< C, R, T, Q > const &in) 
Flips the matrix rows up and down. More...  
template<length_t C, length_t R, typename T , qualifier Q>  
GLM_FUNC_DECL void  qr_decompose (mat< C, R, T, Q > const &in, mat<(C< R?C:R), R, T, Q > &q, mat< C,(C< R?C:R), T, Q > &r) 
Performs QR factorisation of a matrix. More...  
template<length_t C, length_t R, typename T , qualifier Q>  
GLM_FUNC_DECL void  rq_decompose (mat< C, R, T, Q > const &in, mat<(C< R?C:R), R, T, Q > &r, mat< C,(C< R?C:R), T, Q > &q) 
Performs RQ factorisation of a matrix. More...  
Include <glm/gtx/matrix_factorisation.hpp> to use the features of this extension.
Functions to factor matrices in various forms
GLM_FUNC_DECL mat<C, R, T, Q> glm::fliplr  (  mat< C, R, T, Q > const &  in  ) 
Flips the matrix columns right and left.
From GLM_GTX_matrix_factorisation extension.
GLM_FUNC_DECL mat<C, R, T, Q> glm::flipud  (  mat< C, R, T, Q > const &  in  ) 
Flips the matrix rows up and down.
From GLM_GTX_matrix_factorisation extension.
GLM_FUNC_DECL void glm::qr_decompose  (  mat< C, R, T, Q > const &  in  ) 
Performs QR factorisation of a matrix.
Returns 2 matrices, q and r, such that the columns of q are orthonormal and span the same subspace than those of the input matrix, r is an upper triangular matrix, and q*r=in. Given an nbym input matrix, q has dimensions min(n,m)bym, and r has dimensions nbymin(n,m).
From GLM_GTX_matrix_factorisation extension.
GLM_FUNC_DECL void glm::rq_decompose  (  mat< C, R, T, Q > const &  in  ) 
Performs RQ factorisation of a matrix.
Returns 2 matrices, r and q, such that r is an upper triangular matrix, the rows of q are orthonormal and span the same subspace than those of the input matrix, and r*q=in. Note that in the context of RQ factorisation, the diagonal is seen as starting in the lowerright corner of the matrix, instead of the usual upperleft. Given an nbym input matrix, r has dimensions min(n,m)bym, and q has dimensions nbymin(n,m).
From GLM_GTX_matrix_factorisation extension.